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ABSTRACT: Polyanhydrides are a class of degradable
biomaterials that have shown much promise for applica-
tions in drug and vaccine delivery. Their properties can be
tailored for controlled drug release, drug/protein stability,
and immune regulation (adjuvant effect). Identifying the
relationship between the molecular structures of the
polymers and the drug release kinetics profiles would
help understand the release mechanism and aid in the
accurate prediction of drug release and the rational design
of polymer-based drug carrier systems. The molecular structure descriptors that had the most impact on the release kinetics
were identified using a prediction/optimization data mining approach. Using this new approach for modeling nonlinear release
kinetics behavior, we determined that the descriptors which had the greatest effect on the release kinetics were the number of
backbone -COO- nonconjugated bonds, the number of aromatic rings, and the number of -CH2- bonds.

KEYWORDS: polyanhydrides, degradable biomaterials, drug delivery, vaccine delivery, drug release kinetics

1. INTRODUCTION

The use of biodegradable polymers as controlled delivery
devices has a significant advantage over competing delivery
systems. Their chemistries can be tailored to stabilize protein
drugs and provide controlled, sustained drug release. Their
degradation products are biocompatible, nonmutagenic, and
inhalable or injectable (i.e., there is no need to surgically remove
the device). The release kinetics can bemodulated by altering the
copolymer composition or by changing the structure of copoly-
mers. Understanding the relationship between the molecular
structure of the polymers used in these devices and their drug
release kinetics profiles will aid in understanding the release
mechanism and the accurate prediction of drug release, which will
lead to the rational design of polymer carrier systems. The class of
biodegradable polymers considered here are polyanhydrides based
on copolymers of sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy)-
hexane (CPH) and of 1,8-bis(p-carboxyphenoxy)3,6-dioxaoctane
(CPTEG) and CPH. CPTEG/CPH and CPH/SA copolymers
were synthesized in a combinatorial format linearly varying in
composition, loaded with a model protein, bovine serum albumin
(BSA), and dried to form BSA-loaded polymer film libraries.

Poly(CPH) and poly(SA) are hydrophobic polymers, which
can prevent covalent aggregation by reducing the water penetra-
tion into the core, whereas the amphiphilic CPTEG is added to
enhance the stability of the protein by preventing noncovalent
aggregation and acid-induced hydrolysis.1-4 The drug release
profiles from polyanhydride carriers can vary from days to
months depending on the polymer chemistry, drug partitioning,

and drug loading. The degradation via hydrolysis into their acidic
monomers takes a period of months for poly(CPH), weeks for
poly(SA),5,6 and days for poly(CPTEG).7

Previous work has shown an important relationship between
polymer microstructure and drug release kinetics of the CPH:SA
polyanhydride system.8 The experimental results demonstrated
that encapsulated drugs can partition into the microphase
separated domains of the copolymers (when present, for exam-
ple, in 20:80 CPH/SA), which can affect the subsequent drug
release kinetics. Additionally, it is known that erosion kinetics are
closely related to protein release kinetics in this polyanhydride
system because of their surface erosion mechanism. For con-
trolled-release applications, drug release kinetics are controlled
by the erosion kinetics, rather than by swelling and diffusion as in
some bulk-eroding systems.9 Previous work in our laboratories
focused on developing a high-throughput platform to investigate
protein release from this polyanhydride system.10 This platform
enabled the creation of a library of numerous different polymers,
which were screened in parallel for protein release with a
fluorescensce-based detection method; this screening resulted
in the identification of chemistry and pH dependent protein
releasemechanisms. Several approaches to understand andmodel
the erosion kinetics of biodegradable polymer carriers have
been proposed in the literature. Thombre and Himmelstein,11
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Zygourakiset al.,12,13 and Batyckyet al.14 developed models for
polymers with homogeneous compositions. Larobina et al.15 and
Kipper and Narasimhan16 developed models that account for
microphase separation for 1,3-bis-(p-carboxyphenoxy)propane/
SA (CPP/SA) and CPH/SA copolymers.

Similarly, some numerical modeling techniques have been
proposed for modeling the release drug kinetics of polymers.
Ibric et al.17 used an artificial neural network (ANN) to model
aspirin release from tablets as a function of concentration and
compression pressure. Husseini et al.18 used an ANN to predict
acoustic release of doxorubicin from Pluronic P105 micelles.
Takayama et al.19 used an ANN to predict parameters in a
developed release equation. The criteria for model selection
varied from root mean squared error (RMSE), mean squared
error (MSE), and Akaike information criteria (AIC). AIC is the
best criterion because it takes both the model complexity and
fitting performance into consideration, thereby avoiding an
overfitting of the data.20,21

The objective of this work was to build a numerical modeling
method combining nonlinear machine learning algorithms and
evolutionary calculation algorithms for predicting release kinetics
behavior. Building off of our previous work,10 release kinetics of
bovine serum albumin (BSA) protein from CPTEG/CPH and
CPH/SA copolymer systems linearly varying in copolymer
composition were studied by measuring the cumulative mass of
protein released over time. Using the modeling method, several
key structural descriptors of polymeric carriers that control the
release profiles were identified. The approach developed here can
provide guidance in selection of polymer molecular structures for
predictable controlled release profiles from polymeric devices.

2. EXPERIMENTAL PROCEDURES

2.1. Materials. Monomer synthesis was carried out with the
following chemicals: acetic acid, potassium carbonate, toluene,
dimethyl formamide, sulfuric acid, and acetonitrile (purchased
from Fisher Scientific (Fairlawn, NJ)); 1-methyl-2-pyrrolidinone,

4-p-hydroxybenzoic acid, 1,6-dibromohexane, and triethylene
glycol (purchased from Sigma Aldrich (St. Louis, MO)); and
4-p-fluorobenzonitrile (obtained from Apollo Scientific (Cheshire,
U.K.)). The chemicals utilized in polymerization, nanosphere
fabrication, and buffer preparation include petroleum ether, pen-
tane, acetic anhydride, chloroform, methylene chloride, dibasic
potassium phosphate, and monobasic potassium phosphate
(purchased from Fisher Scientific). BSA was purchased from
Sigma Aldrich. Themicrobicinchoninic acid (BCA) protein assay
kit was obtained from Pierce Biotechnology, Inc. (Rockford, IL).
2.2. High-Throughput Fabrication of Combinatorial BSA-

Loaded Polymer Film Libraries. CPTEG and CPHmonomers
were synthesized as described previously.7,22 The SA monomer
was purchased from Sigma Aldrich. The monomer units of SA,
CPH, and CPTEG are shown in Figure 1. CPH/SA and
CPTEG/CPH prepolymer libraries, linearly varying in molar
composition, were deposited in a multiwell substrate using an
automated robotic deposition apparatus. The polymer libraries
were then synthesized in high throughput at the respective
vacuum and temperature (0.3 Torr and 140 �C (CPTEG:CPH)
and 180 �C (CPH:SA)) for 1.5 h as described previously.10,23-25

Following synthesis of the combinatorial film library, BSA was
uniformly dispersed in methylene chloride with sonication and
the robotic deposition apparatus then utilized to dissolve the
films in the methylene chloride with BSA. Next, the polymer/
protein solution was sonicated for uniform dispersion and dried
at room temperature under vacuum overnight resulting in 6%
BSA loaded polymer film libraries. This high-throughput process
for polymer synthesis and protein encapsulation into polyanhy-
dride films was utilized from previously reported methods.2,10

Four replicates of two different polymer film libraries were
investigated for protein release kinetics and included the following
CPH/SA chemistries: poly(SA), 25:75 CPH/SA, 50:50 CPH/SA,
75:25 CPH/SA, poly(CPH) and the following CPTEG/CPH
chemistries: poly(CPTEG), 75:25 CPTEG/CPH, 50:50 CPTEG/
CPH, 25:75 CPTEG/CPH, and poly(CPH).
2.3. Polymer Film Library Characterization. Polymer struc-

ture and molecular weight were determined by end group
analysis with proton nuclear magnetic resonance spectroscopy
(1H NMR) for blank polymer film libraries using a Varian VXR
300 MHz spectrometer (Varian Inc., Palo Alto, CA) (Table 1).
Samples were dissolved in deuterated chloroform and their
chemical shifts assessed with respect to the chloroform peak

Figure 1. Chemical structure of CPH, SA, and CPTEG repeat units.
The monomers vary in hydrophobicity that affects the controlled drug
release. The polymers can be synthesized into combinatorial polymer
film libraries and loaded with protein. Upon release, the protein kinetics
can be quantified and modeled.

Table 1. Number Average Molecular Weight and Polydis-
persity Index of Combinatorially Synthesized CPH/SA and
CPTEG/CPH Copolymers Obtained by GPC

CPH/SA copolymer Mn (Da) polydispersity index

0:100 11 400 2.1

25:75 15 200 2.5

50:50 12 900 2.2

75:25 13 500 2.3

100:0 18 200 2.1

CPTEG/CPH Copolymer Mn (Da) polydispersity index

0:100 10 500 2.2

25:75 13 400 3.0

50:50 9600 2.3

75:25 9300 2.6

100:0 11 100 2.4
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(δ = 7.26 ppm). The polymer molecular weight and polydisper-
sity were measured using gel permeation chromatography
(Table 1). A high-throughput evaluation of the surface chemistry
(molar composition) and accuracy of the robotic deposition
apparatus of the combinatorially synthesized CPH/SA poly-
mer film libraries (no protein) was determined using Fourier
transform infrared (FTIR) spectroscopy with a Nicolet 6700
FTIR spectrometer (Thermo Scientific) as described previously
(Figure 2).2,10,23,25 The polymer films libraries were synthesized
on an IR transmissive silicon nitride multiwell substrate utilizing
the robotic deposition apparatus. FTIR spectroscopy was con-
ducted in an automated fashion with a total of 200 scans per
spectrum at a resolution of 4 cm-1 by utilizing a programmable
mapping software (Atlas). This allowed for specific sample and
background maps to be preprogrammed into the sample detec-
tion setup, therefore allowing numerous FTIR spectra to be
measured without user operation.
2.4. Protein Release from the Polymer Film Libraries. Fol-

lowing fabrication and characterization of the protein-loaded
polymer film libraries, 1 mL of phosphate buffer saline (PBS) at
pH 7.4 was added to each release sample well. The well plates
were sealed to prevent evaporation and incubated in a horizontal
shaker at 37 �C and 100 rpm for the duration of the experiment.
Samples containing released BSA were taken at incremental time
points throughout the study, which was terminated after one
month. The BSA release samples were quantified using the
micro-BCA assay and the protein release data presented as a
cumulative mass fraction of protein released, in which the
amount of protein released at each specific time point was
normalized by the total amount of protein encapsulated into
the films. All samples were run in triplicate, as described by the
manufacturer (Pierce) and fresh buffer was added back to the
sample well to maintain constant sink conditions. This entire
procedure of protein release from polymer films was followed as
described previously.10 Figure 2 shows the cumulative mass
fraction released from the polymer film libraries for the
CPTEG:CPH and the CPH:SA systems. The polymer release
kinetics demonstrated chemistry dependent trends decreasing in
protein release with increasing polymer hydrophobicity (i.e.,
CPH content). This is concurrent with previous studies.3,10,24

3. RESULTS

Polymer libraries were synthesized at high throughput con-
sisting of 10 different polymer chemistries with four replicates of
each chemistry, resulting in a 40-sample library. The properties of

polymers synthesized in these libraries were similar to those of
conventionally synthesized polymers.1,3,4,8,10,22-24 The polymer
molecular weights were in the range of 9000-16 000 g/mol with
a polydispersity ranging between 1.5 and 3.0 (Table 1) as
reported previously. Additionally, 1H NMR chemical peaks were
located in the correct positions and were of appropriate relative
areas, indicating that the copolymers were pure, and were of the
desired copolymer compositions. High throughput FTIR anal-
ysis demonstrated that the robotic deposition apparatus was
successful at achieving the intended molar ratios of each mono-
mer in the polymer library (Figure 2).

Following polymer characterization, the release kinetics of
libraries encapsulating BSA was monitored over one month. As
observed in Figure 3, the release kinetics are chemistry depen-
dent with the least hydrophobic polymers (i.e., poly(SA) and
poly(CPTEG)) releasing the BSA the most rapidly. This is in
agreement with previous conventional and combinatorial studies in
which release kinetics of other proteins were investigated.1,3,10,24

4. MODELING

4.1. Building Molecular Structure Descriptor Library. To
identify which aspects of the molecular structure had the most
impact on the release kinetics, the components of the molecular
structure must be fully described by a comprehensive library of
molecular structure descriptors (Table 2). The library was built
based partially on the descriptors defined by Bicerano.26 On the
basis of graph theory, Bicerano defined topological connectivity
indices and used them to predict more than 70 polymer proper-
ties. As numerous polymer properties can be calculated as a
function of these descriptors, it follows that kinetics behavior
may also be possible to model, although more complex mathe-
matics are required.
The descriptors defined by Bicerano are as follows. The first

four descriptors in Table 2 describe the electronic structure of
each non-H atom (for example, the valence shell hybridization,
inner-shell electrons, and lone pairs along vertex set) and
electronic structure of each bonded set of atoms (including σ
and π electrons for molecular graph edge set). BB_index1,
BB_index2, N_K, and SG_index, which depict the nature of
the connectivity and conformations of the chain backbone and
the relative size of the side group portion of the hydrogen-
suppressed graph of the repeat unit are defined and used as fitting
variables for the steric hindrance parameter. The definitions of
other structural descriptors are defined in Table 2.
4.2. Attribute Selection Approach. Genetic algorithm

(GA) and support vector regression (SVR) are used to determine
which of the structural descriptors has the most impact on the
release behavior. The overall logic of the approach is presented in
Figure 4. Attribute selection is a nondeterministic polynomial
time problem, meaning that a computer cannot solve the
problem in polynomial time. To counter this problem, GA was
applied because it can exploit the most promising solutions
without performing an exhaustive search, thereby overcoming
issues with other widely used heuristic algorithms such as
sequential forward search and sequential backward search
4.2.1. Genetic Algorithm. GAs are a class of heuristic optimi-

zation algorithms that are inspired by evolutionary biology. GAs
have been applied to multiple applications, including drug
design,27-31 job scheduling,32 robot behavior,33,34 and decision
making.35-37 GAs find a best set of values of parameters that
maximize (or minimize) a function by generating a population of

Figure 2. High-throughput FTIR analysis of a CPH/SA copolymer
library (y-axis percent CPH).25
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solutions at one iteration (generation), and then calculating the
value of the goal function (fitness) for each solution. Following
the logic of evolutionary biology, the solutions with highest
fitness pass into the next generation, with crossover (exchange of
two solutions) and mutation (alteration of some values) occur-
ring. The solutions with highest fitness functions are most likely
to survive, with the best traits of the solutions maintained via
crossover (e.g., offspring inheriting best traits of parents), while
mutation can serve to avoid being caught in a local minima/
maxima. Crossover points are generally randomly selected, with
two individuals exchanging some characteristic. The newly
generated two individuals are then passed into the next genera-
tion. For the individuals selected for mutation, parts of the
individuals will be mutated into other values. If the individuals
are binary-encoded, zero will be mutated into one, and vice versa.
If the individuals are real-number encoded, a user defined
mutation method may be applied.

GA randomly generates a population of solutions, which can
be expressed as a matrix Xmn. M is the population size, which
means in each generation (each iteration of GA) m solutions are
generated. N is the number of parameters to be assessed in the
goal function. Each row of X is called an individual, which is in
fact a set of initial values of {X1,X2, ...,Xn}. Each row ofmatrixX is
substituted into the function to be optimized [y = f(X1, X2, ...,Xn)]
and to calculate individual fitness yi (i = 1, 2, ..., m). The
individuals with highest fitness yi pass directly into the next
generation, with the increased likelihood that an individual is the
true solution with increasing fitness.
4.2.2. Support Vector Regression. SVR is an extension of

SVM (support vector machine) and is a kernel-based supervised
learning algorithm. SVM and SVR are widely used in bio-
informatics,38-40 image processing,41-43 and control systems.44

SVMs are a general class of supervised learning methods that can
perform classification or regression through mapping data into a

Figure 3. Cumulative mass fraction of released BSA from polymer film libraries: (top) CPTEG/CPH system and (bottom) CPH/SA system. The
polymer release kinetics demonstrated chemistry dependent trends of decreasing protein release with increasing polymer hydrophobicity (CPH
content).
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higher dimension kernel space. On the basis of structural risk
minimization, a separating hyperplane is obtained, which max-
imizes the separation between the classes. The SVM is optimized
for structural risk minimization by minimizing the generalization
error, as opposed to the empirical error as done with other
methods, such as neural networks. SVM is a quadratic problem
but with linear constraints, while neural networks involve a
nonconvex and unconstrainedminimization problem.When used
for classification the maximum distance between separated hy-
perplanes is sought, while when used for regression, the general-
ization bounds of the hyperplanes are optimized. With the use of
kernels, the data is mapped onto a higher dimensional space to
account for nonlinear data.
4.2.3. GA/SVR Hybrid Attribute Selection Algorithm. SVR can

be embedded within GA to provide a fitness value. The process
operates by GA randomly generating a population of individuals,
with each individual a subset of structural descriptors. Then for
each individual, one SVR model is built based on the selected
structural descriptors. A polynomial kernel K(x,y) = Æx,yæ p is
used and the exponent p is optimized by minimizing AIC. AIC is
a measure of the fitness of a regression model.

AIC ¼ 2Nw þN lnðRSS=NÞ ð1Þ
Here Nw is the total number of weights/support vectors, N is

the total number of data points, and RSS is the residual sum of
squares. Individuals (subsets of attributes) are ranked based on
the AIC value, with a lower AIC value desired. The GA
operations of selection, crossover, and mutation are applied,

with the best individuals as ranked by AIC maintained and new
individuals generated.

5. PARAMETERIZING NONLINEAR RELEASE
KINETICS PROFILES

As shown in Figure 4, the logic of this work is to connect the
descriptors of the molecular structure with the release kinetics
profiles of different combinatorially fabricated polyanhydride films,
thus allowing the identification of the aspects of the molecular
structure that primarily dictate the release kinetics behavior. How-
ever, the release profiles are nonlinear, and SVR fails to build a good
model that addresses the nonlinearity between the transition phase
and the steady state phase. The challenge then becomes to create a
parametrization of these nonlinear profiles that still reflects all of the
information in the release curve.

As a first step to parametrize the profiles, exponential func-
tions were developed to fit the profiles, based on the observation
that exponential functions are widely used in physics to explain
processes that are related with time. The following two equations
were found to represent all of the measured profiles.

cumulative fraction BSA released ¼ expðAþ B=tÞ ð2Þ

cumulative fraction BSA released ¼ exp Aþ B1
t
þ B2

t2

� �
ð3Þ

On the basis of these two equations, five parameters were
identified which can be used to represent the nonlinear profiles

Table 2. Twenty-Five Molecular Descriptors for the Repeat Unit of the Copolymers Used in This Studya

ID structure descriptor descriptions

1 0X atomic indices

2 0Xv atomic indices

3 1X connectivity indices

4 1Xv connectivity indices

5 N total non-hydrogen atom number in one repeat unit

6 BB_index1 backbone index1 (12.19)

7 N_SP number of atoms in the shortest path across the backbone of a polymeric repeat unit, N_SP e N_BB (2.11)

8 N_C number of carbon atoms in a polymeric repeat unit

9 N_H number of hydrogen atoms in a polymeric repeat unit

10 N_ester_n number of backbone -COO- (nonconjugated)

11 N_ester_c number of backbone -COO- (one-sided conjugation with aromatic ring)

12 N_aromaticRing number of aromatic rings in a polymeric repeat unit

13 N_CH2 number of CH2 in a polymeric repeat unit

14 N_ether numer of -O- in a polymeric repeat unit

15 Nmv Nmv = 2*N_ester þ 3*N_ether (3.14)

16 N_K N_K = -3*N_ether_quote-3*N_acrylic_ester (12.27)

17 N_rot the total number of rotational degrees of freedom parameter

18 N_backbone_O number of backbone oxygen atoms in a polymeric repeat unit

19 N_dc N_dc = 7*N_backbone_O þ 12*N_sideGroup_O (9.11)

20 N_O number of oxygen atoms in a polymeric repeat unit

21 M mole weight of the repeat unit

22 BB_index2 backbone index 2 (12.20)

23 SG_index backbone index 4 (12.22)

24 N_alkyl_ether the number of ether (R-O-R0) linkages between two units R and R0 both of which are connected to the alkyl carbon atom

25 N_group N_group = -N_alkyl_ether þ 7*N_CO þ 2*N_otherCO (5.10)
aThe equation numbers refer to the corresponding equations in Bicerno.24 These 25 descriptors were calculated for each composition and organized in a
data set so as to be compared with the release profiles.
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(A and B from eq 2 and A, B1, and B2 from eq 3). The values of
these parameters for the polyanhydride systems were calculated.
An example of the modeled profiles and parameters for the
CPTEG/CPH system is shown in Figure 5. Using these two
models, all the nonlinear profiles were successfully parametrized.

6. MOLECULAR STRUCTURE IMPACT ON RELEASE
KINETICS BEHAVIOR

In section 2, the release kinetics behavior of polyanhydride
films was discussed, and in section 5, a model for parametrizing
the nonlinear release profiles was developed. In section 4.1, a
descriptor library containing information on the molecular
structure was established, and in section 4.2, a mathematical
approach based on data mining logics for linking the parameters
of the release profiles with the molecular structure descriptors
was designed. In this section, findings are presented on the basis
of the combination of the results from these previous sections.

When the GA/SVR algorithm is carried out to a limited
number of generations, multiple results are possible because
the initial population of GA is randomly generated. To address
this issue, eight different GA/SVR algorithms were run, and the

results across all of these models were assessed. The GA/SVR
algorithm was carried out to 100 generations and with a popula-
tion size of 20. The poly kernel exponent p was chosen to
optimize the value of AIC. The result provided from the GA/
SVR analysis is a numerical model predicting the release profile as
a function of the molecular structure descriptors. For example,
the most accurate model identified number of carbon atoms in a
polymeric repeat unit, number of backbone -COO- noncon-
jugated bonds, number of aromatic rings in a polymeric repeat
unit, number of CH2 bonds in a polymeric repeat unit, and molar
weight of the repeat unit as being sufficient to model the release
kinetics profiles, based on the definitions of (A, B, B1, B2).

The accuracy of the model for the release kinetics behavior is
inversely related to the AIC value (i.e., AIC should be mini-
mized), and on the basis of this criterion, three models were
highly accurate. In each of these three models the number of
nonconjugated -COO_- backbone units (descriptor 10 in
Table 2), the number of aromatic rings in the polymeric repeat
unit (descriptor 12 in Table 2), and the number of CH2 bonds in
the polymeric repeat unit (descriptor 13 in Table 2) were used to
model the release profile. Additionally, if the number of times
each descriptor is used in one of the eight models is counted

Figure 4. Outline of the method proposed in this study. Tomore accurately model the release profiles based on the molecular structure descriptors, the
nonlinear profiles should be parametrized. Then using the newly developed mathematical model for attribute selection, a prediction model linking the
release profile and themolecular structures can be built. This model can then be used to identify which aspects of themolecular structuremost impact the
release kinetics behavior.
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(Figure 6), nonconjugated-COO- backbone bonds, aromatic
rings, and CH2 bonds were again found to be the most relevant
for modeling the release kinetics. Therefore, on the basis of the
criteria of either accuracy of model or the number of times the
descriptor is used for any of the models, these three molecular
structure descriptors were found to be the most relevant.

7. CONCLUSIONS

In this paper, a new approach was presented for determining
which aspects of the polymeric molecular structure have the most

impact on the release kinetics behavior and to use these
molecular descriptors to model the release profile of proteins
from a combinatorial library of biodegradable polymers. The
mathematical approach for modeling the release profile was
based on a combination of GA and SVR. The polymers explored
from the combinatorial libraries included linearly varying molar
compositions of CPTEG/CPH and CPH/SA copolymers, with
the protein release rate found to increase with decreasing
polymer hydrophobicity. From the new attribute selection
approach, it was determined that number of nonconjugated
backbone -COO- bonds, number of aromatic rings, and

Figure 5. Fitting results for the CPTEG/CPH system using ln(BSA released) = Aþ B/t and the values found for two of the possible parameters (A and
B from eq 2).

Figure 6. Number of times each molecular structure descriptor was used to model the release kinetics. The ID corresponds with the labels of Table 2.
The attributes that are found to be most significant in modeling the release kinetics of the SA and CPTEG systems are nonconjugated-COO- bonds,
aromatic rings, and -CH2- bonds (encircled by the dotted ovals).



57 dx.doi.org/10.1021/co100019d |ACS Comb. Sci. 2011, 13, 50–58

ACS Combinatorial Science RESEARCH ARTICLE

number of -CH2- bonds were most important for accurately
modeling the release kinetics behavior. This work introduces a
new approach for understanding which factors control drug
release and has important implications for the rational design
of new polymeric carriers for drug delivery.
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